DEEP FOUNDATIONS

Dr. Youssef Gomaa Youssef

Dr. Youssef Gomaa Youssef

Textbook:

• Tomlinson, J.J., 1977. Pile Design and Construction

Practice, Garden City Press Ltd., Letchworth.

- Canadian Foundation Engineering Manual, 1978,
 Canadian Geotechnical Society, Montreal.
- Engineer Manual "DESIGN OF PILE FOUNDATIONS", EM 1110-2-2906.

Why go deep?

[A] Near surface soils inadequate

- weak relative to applied loads
- erodible
 - watercourses, scour of soil

[B] Load orientation

- lateral loading raked piles
- uplift loading anchors

[C] Settlement concerns

Deep foundations usually L/B > 5 L = pile length, B = dia. or breadth of pile

- 1. Driven Piles
- MATERIALS
 - wood, precast concrete, steel

SECTIONS

- octagons, solid circles, rings, H-sections LIMITATIONS

Vibrations due to driving? Head room?

Pile material

- Steel; H- piles, Steel pipe
- Concrete; Site cast or Precast
- Wood; Timber
- Composite

- 2. Bored Concrete Piles
- Large diameter?
- Increased base diameter?

- underreamed

• Excavation support?

- Bentonite slurry

- Limited practical depth
- Soil restrictions

Caisson Installation Sequence

- Hole drilled with a large drill rig
- Casing installed (typically)
- Bell or Tip enlargement (optional)
- Bottom inspected and tested
- Reinforced
- Concrete placement (& casing removal)

Site Cast Concrete Piles

Dr. Youssef Gomaa Youssef

3. Other

- Driven cast in-situ piles
 - driven tube pile, filled with concrete
- Continuous flight augur piles
 - hollow augur string
 - concrete slurry inserted through tip as string withdrawn
- Etc, etc, etc

Cast in-situ piling

Reference http://www.keller-ge.co.uk/index.html

For construction, piles may be subdivided into:

- 1. Displacement (or large-displacement) piles
- 2. Small-displacement piles
- 3. Non-displacement piles

NON-DISPLACEMENT PILE

Soil <u>is</u> removed

The excavation may <u>or</u> may not be supported

DISPLACEMENT PILE

Soil is 'displaced' within the adjoining soil mass

• Displaced volume \approx pile volume

SINGLE PILE LOAD CAPACITY

Capacity dependent on construction

- relaxation of field soil stresses?
 - less contact with side soil, less support
- Bentonite slurry used?
 - slippery side contact (smeared)

Stress relaxation expected for DISPLACEMENT PILES

SITE INVESTIGATION FOR PILING

- 1. Soil strength and stiffness
- 2. Soil chemical analysis \Rightarrow *corrosion*
- 3. Possible obstructions to installation
- 4. Potential for damage to adjoining structure due to "ground heave"
- 5. Vibrations

SITE INVESTIGATION FOR PILING

After-construction effects of:

- 1. Expansive soil
- 2. Negative friction / *downdrag*
- 3. Slope instability

PILES - design

- 1. Geotechnical
 - strength and stiffness
 - \Rightarrow "serviceability"
- 2. Pile structural strength
- 3. <u>Pile material</u> "durability"

GEOTECHNICAL STRENGTH

Vertical compression loading:

ULTIMATE GEOTECHNICAL STRENGTH

- or capacity, P_u

$$\mathbf{P}_{u} = \mathbf{f}_{s}\mathbf{A}_{s} + \mathbf{f}_{b}\mathbf{A}_{b}$$

- $f_s =$ average, <u>fully mobilized</u>, "skin friction" (= *INTERFACE* friction <u>and</u> adhesion)
- $f_b = \underline{ultimate}$ base bearing pressure

Dependent upon – SOIL TYPE SOIL PROFILE PILE MATERIAL INSTALLATION

Calculations

Circular pile, length, L:

 $\mathsf{P}_{\mathsf{u}} = \Sigma \mathsf{f}_{\mathsf{s}}(\pi \mathsf{D}\mathsf{I}) + \mathsf{f}_{\mathsf{b}}(\pi \mathsf{D}_{\mathsf{b}}^2/4)$

where $D_b = diameter of base$

Note 1: *f_s may vary down the shaft*

(add contributions)

Note 2: *f_b* only at base

The equivalent factor of safety is usually between 2 and 2.5 for static analysis

based on

good soil data

and site investigation

Dr. Youssef Gomaa Youssef